Tesing is successful.
$ \lim_{x\to 0}{\frac{e^x-1}{2x}} \overset{\left[\frac{0}{0}\right]}{\underset{\mathrm{H}}{=}} \lim_{x\to 0}{\frac{e^x}{2}}={\frac{1}{2}} $
$y=x^2$
$e^{i\pi} + 1 = 0$
$e^x=\sum_{i=0}^\infty \frac{1}{i!}x^i$
$\frac{n!}{k!(n-k)!} = {n \choose k}$
$A_{m,n} =
\begin{pmatrix}
a_{1,1} & a_{1,2} & \cdots & a_{1,n}
a_{2,1} & a_{2,2} & \cdots & a_{2,n}
\vdots & \vdots & \ddots & \vdots
a_{m,1} & a_{m,2} & \cdots & a_{m,n}
\end{pmatrix}$
Tables:
First column name | Second column name
-------------------|------------------
Row 1, Col 1 | Row 1, Col 2
Row 2, Col 1 | Row 2, Col 2
First column name | Second column name |
---|---|
Row 1, Col 1 | Row 1, Col 2 |
Row 2, Col 1 | Row 2, Col 2 |
See this Blog
See this blog
Build with Jekyll and true minimal theme